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1 Introduction

Micro electrical mechanical systems (MEMS) have been heavily researched, as the development
of traditional piezo-based ultrasound imaging technology has reached its limit. Thus, novel
high-resolution imaging methods, specifically pertaining to smaller objects, must be developed.
Consequently, capacitive micro-machined ultrasound transducers (CMUT) have generated con-
siderable interest as they exhibit distinguishing properties that current piezoelectric ultrasonic
transducers lack [3]. Hence, as further research is performed regarding the fabrication and
optimization of CMUT technology, it is required that the fundamental physical theory is well
understood. Thus, it is important to have accurate analytical and numerical models of CMUT
devices.

Herein this report, general background information pertaining to CMUT operation, the
motivation of this project, and finally the methods and results are presented and discussed.

2 Background

2.1 Capacitive Micromachined Ultrasound Transducers

Ultrasound transducers convert electrical energy, such as an applied voltage bias, into mechanical
energy, producing sound waves whose frequencies are above the human hearing threshold (>
20kHz). The ultrasound pulse will propagate through a given medium until it experiences a
velocity fluctuation, indicating that it has interacted with a different material. This acoustic
impedance mismatch will cause a portion of the ultrasound wave to reflect in a manner similar
to light waves interacting with refractive index gradients. The reflected ultrasound beams are
then detected by the emitting device, enabling the location of materialistic interfaces to be
determined. This is accomplished via time of flight (TOF) analysis, in which the elapsed sent-
received signal time is monitored.

A series of scan lines, each known as an A-scan, are used in order to acquire an ultrasound
image. These scans are generated through the linear focusing of ultrasound waves. The sound
velocity gradient is identified by analyzing the relative intensities of the incident and reflected
signals. A series of A-scan acquisitions, performed at various angles, can be used in combination
in order to produce a 2D image, which is typically referred to as a B-scan.

Beam focusing is achieved by beam forming, shown in Figure 1. Beam forming requires
pulsed emission from numerous transducer elements with calculated delay periods, resulting in
a highly focused beam.

Figure 1: Controlling the focus point of an ultrasound pulse [1]

The operational mechanism of a CMUT differs from that of a traditional piezoelectric trans-
ducer. A CMUT generates an ultrasonic pulse by means of an applied voltage bias between
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a capacitive plate and a thin capacitive membrane. The thin membrane is subsequently de-
flected due to the resulting, attractive electrostatic force. The subsequent application of a
high-frequency AC voltage results in ultrasound pulses.

Similarly, in signal-receiving mode, the ultrasound-induced deflection profile results in a
capacitance change. The received signal intensity, and hence resolution, can be maximized
through the use of a compliant capacitive membrane. Within a CMUT design, this condition
is satisfied by the application of a DC voltage, producing a strongly attractive force and thus
reducing the relative displacement between both capacitors. Typically this bias is applied such
that its magnitude is slightly less than the pull-in voltage, VP I , of the capacitive plates, enabling
the achievement of large amplitude gains with very small AC signals [2].

In order to elaborate upon this concept, consider a first-ordered lumped element model
consisting of a capacitor, a mass, and a spring. The mass will actuate due to the resultant force
of the capacitive and spring components of the design, which is described as

Fcap + Fspring = Fmass. (1)

The force component of the capacitor, Fcap, is derived from the electrostatic force generated
from the voltage bias,

Fcap = − d

dx

(1
2

CV 2
)
=

ε0AV 2

2(g0 − w)2
. (2)

In the above equation, A corresponds to electrode area, g0 represents the effective distance
between capacitive plates, and w corresponds to the membrane displacement from its unbiased
position. Additionally, Fspring is obtained from Hooke’s law and Fmass from Newton’s second
law of motion.

Combining these terms into Equation 1, the following result is obtained:

m
d2x(t)

dt2 − ε0AV (t)2

2(g0 − w(t))2
+ kw(t) = 0. (3)

For a static deflection, the force balance can be simplified to

ε0AV 2

2(g0 − w)2
= kw. (4)

Evidently, as the applied voltage is increased, the static gap distance decreases, resulting in
the increase of the spring force.

(a) V < Vpull−in (b) V = Vpull−in

Figure 2: Resulting force as a function of gap distance, g [2]
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Two mathematical solutions are available for the description of a CMUT that is operated
at voltages lower than its pull-in voltage. These are shown in Figure 2a, in which Point B
corresponds to an unstable solution - it will result in capacitive plate collapse due to the dominant
electrostatic force [2]. The voltage at which this phenomenon occurs is referred to as the pull-in
voltage of the system, displayed in Figure 2b. Conversely, at point A, the overpowering spring
force will return the system to equilibrium.

2.2 Isotropic Silicon

Isotropic materials, such as amorphous silicon, are directionally independent and hence are not
characterized in terms of specific crystal orientations. Consequently, their complete geometries
are described by a single Young’s modulus which is used in order to calculate the stress and
strain acting upon the material. This is achieved using Hooke’s law, shown in Equation 5.

σ = Eε (5)

In the above equation, σ corresponds to stress, ε corresponds to strain, and E corresponds
to the Young’s modulus of the material.

2.3 Anisotropic Silicon

Contrary to isotropic silicon, anisotropic silicon is directionally dependent. Consequently, com-
pliance and stiffness tensors, each containing up to 36 terms, are required in order to obtain a
complete description of the elasticity of the material. The resulting stresses and strains for [100]
silicon are calculated from these matrices according to Equations 6 and 7 [4].

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

165.6GPa 63.9GPa 63.9GPa 0 0 0
63.9GPa 165.6GPa 63.9GPa 0 0 0
63.9GPa 63.9GPa 165.6GPa 0 0 0

0 0 0 79.5GPa 0 0
0 0 0 0 79.5GPa 0
0 0 0 0 0 79.5GPa

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7.68pPa −2.14pPa −2.14pPa 0 0 0
−2.14pPa 7.68pPa −2.14pPa 0 0 0
−2.14pPa −2.14pPa 7.68pPa 0 0 0

0 0 0 12.6pPa 0 0
0 0 0 0 12.6pPa 0
0 0 0 0 0 12.6pPa

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

3 Fabrication

A single wafer, multi-step photo-lithography process is a common approach in the fabrication of
CMUT devices [3]. The initial stage of such a process consists of the deposition and patterning
of a sacrificial layer, typically either silicon nitride or silicon oxide, onto the silicon substrate.
Next the capacitive CMUT membrane is deposited. A via is then created in order to allow the
sacrificial layer to be etched and is subsequently sealed. Finally, a metallic electrode is patterned
and deposited onto the substrate.

A second fabrication method is typically employed if the CMUT is to be used in an aqueous
environment. This is to avoid the necessity of the via. The transducer cavity is created and is
then bonded to a SOI (silicon-on-insulator) wafer in order to create a sealed membrane. The
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sacrificial layer is then removed by etching the SOI wafer, resulting in a thin, uniform capacitive
membrane. Finally, the metallic electrode is patterned and deposited onto the membrane of the
device [5].

4 Objectives

The principal objective of this Comsol finite element analysis is to determine which analytical
model best matches the numerical deflection profile obtained for isotropic and anisotropic square
CMUTs. An additional purpose is to determine the analytical peak deflections of each model in
order to validate the CMUT design and boundary conditions within Comsol; model validation
is crucial as an accurate membrane deflection profile is essential for CMUT capacitance calcu-
lations, which are used in order to determine the pull-in voltage of the device. The complete
deflection profile of each analytical model is then compared to that obtained from the FEM
simulation. Lastly, conclusions pertaining to the analytical solutions that best match the FEA
simulation models are drawn.

5 Analytical Solution

Analytical solutions for the deflection profiles of the various CMUT geometries are essential for
model validation as well as to achieve the objective of this investigation. The general analytical
plate deflection equation can be written as

Δp = �hẅ + ∇2
⊥D∇2

⊥w + σ0h∇2
⊥w. (8)

In the above equation, � represents the mass density of the plate, Δp is the applied pressure
load, h corresponds to the height of the plate, σ0 represents the pre-stress to which the plate
is subjected, and w is the plate deflection along the z axis. Additionally, the two-dimensional
Laplacian, ∇2

⊥, is given in Equation 9 whereas the flexural rigidity coefficient, D, is given in
equation 10. Here ν corresponds to the Poisson ratio of the plate material.

∇2
⊥ =

∂2

∂x2 +
∂2

∂y2 (9)

D =
Eh3

12(1 − ν2)
(10)

The square CMUT membrane considered in this investigation was not pre-stressed and hence
the remainder of this report will consider the case in which σ0 assumes a value of zero, reducing
Equation 8 to

Δp = �hẅ + ∇2
⊥D∇2

⊥w. (11)

Exact solutions to this plate equation have been found for circular membranes whereas only
approximations can be obtained for square CMUT membranes.

5.1 Circular Plate Equation Solution

It has been well-documented that the deflection w(r) of a circular membrane can be modelled
by one of two equations based upon the geometry of the device [6, 7]. Equation 12a can be
used to obtain the deflection profile of thin membranes - those membranes in which the peak
deflection, w0, is of greater magnitude than the membrane thickness h. Equation 12b can be
used to obtain the deflection profile of thick membranes - those membranes in which the peak
deflection is of lower magnitude than the membrane thickness. In these equations r corresponds
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to the distance of a given point from the centre of the membrane whereas R represents the total
plate radius.

w(r)thin = w0

[
1 − r2

R2

]
(12a)

w(r)thick = w0

[
1 − r2

R2

]2

(12b)

The analytical solution to the center deflection of a circular CMUT can then be written as
follows [6, 7]

w0 =
Δpr4

64Di
, (13)

where Di is the isotropic flexural rigidity, defined in Equation 10.
Although such exact solutions do exist for circular and elliptical CMUTmembranes and while

they can be easily fabricated using modern process flow technologies, such design geometries are
sub-optimal; the total surface area occupied by these devices relative to the total surface area of
the consumed wafer is not maximized. A more efficient CMUT device would consist of square
or hexagonal membranes.

5.2 Isotropic Square Plate

For the case of square and rectangular membranes, a closed form solution does not exist - the
solution is an infinite Fourier series. Thus in order to extract an expression for the central,
or maximal, deflection of square membranes, the shape membrane displacement profile must
be inferred. The peak displacement can then be solved through the minimization of the total
potential energy of the system, as shown in Equation 14 [7].

∂U

∂ω0
=

∂

∂ω0

[∫ {∫ [
Di

2

(
∇2

⊥w
)2 − p0w

]
dy

}
dx

]
= 0. (14)

This approach has led to peak displacement approximations for both macroscopic and mi-
croscopic square membranes.

5.2.1 Macroscopic Approximation to Membrane Displacement Profile

First, the macroscopic case is considered, in which the bending of thick membranes is dominated
by bending moments. This solution is commonly found in classical mechanics textbooks [6]. This
is obtained by assuming a parabolic deflection shape.

w(x, y) = w0

(
1 − x2

a2

) (
1 − y2

a2

)
(15)

In the above approximation, x and y are the Cartesian displacements away from the centre
of the membrane, w0 is the centre deflection, and a represents half the length of a single side of
the square membrane. The peak deflection can then be calculated as

w0 =
1
792

(2a)4

Di
Δp, (16)

where Di is the isotropic flexural rigidity described above.
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5.2.2 Microscopic Approximation to Membrane Displacement Profile

The peak deflection of a microscopic square membrane can be obtained by inferring the following
deflection profile [7]:

w(x, y) =
w0
4

(
1 + cos

πx

R

) (
1 + cos

πy

R

)
. (17)

Using this approach, the peak deflection of a square, isotropic CMUT membrane can be
derived as

w0 =
1
8π4︸︷︷︸

≈1/779.3

(2a)4

Di
Δp. (18)

5.2.3 Galerkin Method

Finally, a third deflection shape is approximated using the Galerkin method as described by
Thomsen et al [8]. This assumed deflection profile is given by

w(x, y) =
∞∑

k=0,1...

∞∑
l=0,1...

αklφkl(x, y). (19)

For square plates the deflection shape is assumed to be

φkl(x, y) =
(
a2 − x2

)2 (
a2 − y2

)2
xkyl, (20)

which can be reduced to Equation 21, if only three terms are used in the expansion.

w(x, y) =
77Δp(a2 − x2)2(a2 − y2)2(269a2 + 72(x2 + y2))

1025280Dia6 (21)

This approach yields a peak deflection approximation corresponding to

w0 =
20713

16404480︸ ︷︷ ︸
≈1/791.99

(2a)4

Di
Δp. (22)

5.3 Anisotropic Square Plate

An analytical approximation to the beam deflection profile of a square, clamped anisotropic
membrane is available if the Galerkin method is used, in which the deflection profile is approx-
imated by the series shown in Equation 19. The same deflection shape as the isotropic case is
assumed. This approximation results in the following deflection profile:

w(x, y) =
(
a2 − x2

)2 (
a2 − y2

)2 ∞∑
k=0,1...

∞∑
l=0,1...

αklx
kyl. (23)

For a single-term Galerkin expansion of a square, anisotropic membrane, the coefficient α00
is expressed as

α00 =
49Δp

128(7a4 + 2a4k2 + 7a4k4)Da
. (24)

In the above equation, Da is the anisotropic flexural rigidity, which is defined in equation
25, and k2 and k4 correspond to the membrane coefficients which, for [100] silicon, reduce to
equations 26 and 27.
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Da =
(

h3

12

) ( −s11s44
s11(−s11s44) + s44s2

12

)
(25)

k2 = 2
2s2

11 − 2s2
12 − s44s12

s11s44
(26)

k4 =
s11s44
s11s44

= 1 (27)

Finally, the above equations can be utilized in order to obtain the beam deflection profile of
the single-term Galerkin expansion of a square anisotropic CMUT membrane, which is presented
in Equation 28.

wa,1(x, y) =
(
a2 − x2

)2 (
a2 − y2

)2
( 49Δp

128(7a4 + 2a4k2 + 7a4k4)Da

)
(28)

Similarly, the displacement profile for the three-term Galerkin expansion of a square, anisotropic
membrane can be expressed according to Equation 19 to obtain

w′
a,3(x, y) = α′

00φ′
00 + α′

02φ′
02 + α′

20φ′
20. (29)

The values of α′
00, α′

02, and α′
20 where found as described by Thomsen et al [8].

6 Comsol Finite Element Analysis

6.1 FEA Modelling Theory

The finite element analysis (FEA), also known as finite element modelling (FEM), of the electro-
mechanical actuation behaviour of circular and square CMUT devices was performed using the
electromechanics module within Comsol, which combines solid mechanics and electrostatics
modules with a moving mesh. Specifically, it enables the modelling of linear elastic materials,
such as the deformable membrane within a CMUT, using Cauchy’s equation, as shown in Equa-
tion 30 [9]. In this equation, T corresponds to the stress tensor, which, once solved, is used in
order to determine the forces acting upon the dielectric body of the CMUT. This information is
exploited by Comsol in a dynamic manner in order to iteratively calculate displacements and
the electrostatic forces associated with them.

âĂŐ
ρ

d2r

dt2 = ∇T + fext (30)

6.2 Initial CMUT Comsol Model

Initially a circular, isotropic CMUT was constructed using the 3D space dimension within Com-
sol and the available Comsol CAD environment. It consists of four distinct materialistic layers:
The first layer corresponds to the dynamic membrane, which was grounded, and is comprised
of mono-crystalline silicon. The second layer was inserted to simulate the vacuum gap which
exists between the two electrodes of the CMUT. The third layer represents a silicon dioxide film
which is used in order to prevent pull-in voltage short-circuiting. The final layer corresponds
to the biased electrode, which acts as the bulk substrate. It also consists of mono-crystalline
silicon. A finer mesh configuration, consisting of five vertical elements, was selected for the
circular membrane model. The other components of the device design - the air gap, oxide layer,
and bottom electrode - were assigned a coarse mesh configuration, as these segments do not
contribute to the resultant deflection profile of the membrane when the system is unbiased. The
completed geometric design of this device is shown in Figure 3.
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Figure 3: 3D circular CMUT design

The Comsol simulation of the CMUT in coordination with the Electromechanics emi mod-
ule required meshing, constraining, and voltage boundary conditions. Fixed mesh constraints
were applied to the stationary components of the design - namely the biased electrode, the sil-
icon dioxide film, and the circumference of the membrane. Additionally, both electrodes were
maintained at 0 V in order to compare the modelled CMUT deflection profile to available an-
alytical solutions to the circular plate equation for constant loads. Lastly, the pressure applied
to the topmost section of the membrane was swept parametrically from 0 Pa to 500 kPa in
increments of 100 kPa.

6.2.1 Circular CMUT Model Validation

Dimension Value Description
Rad 24.5[μm] Radius of the circular membrane

BotElec 2[μm] Thickness of the bottom electrode
Oxide 0.21[μm] Thickness of the oxide layer
Gap 0.37[μm] Thickness of the vacuum gap

TopElec 1.5[μm] Thickness of the top electrode

Table 1: Parameter name and default values of circular CMUT membrane model

The validation of this model was performed by comparing the analytical deflection profile of
a circular membrane to the numerical solution obtained from the Comsol model. Equation 12b
is used if the center deflection is less than the plate thickness. The device dimensions utilized for
this investigation are presented in Table 1 and the graphical comparison between both solutions
is shown in Figure 4. Analysis of these figures reveals that the deflection profile of the circular
CMUT Comsol model is in excellent agreement with the analytical solution for a myriad of
pressures. Additionally, Figure 4b affirms that these deflection profiles vary linearly as a function
of pressure change. This justifies the graphical representation of displacement profiles in reduced
units and hence normalized deflection profiles will be used for the remainder of this report.

Following the validation of the circular CMUT model, a model of a square CMUT was
constructed and analyzed using FEA.
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(a) Comparison of analytical deflection profile
to Comsol numerical deflection profile

(b) Comparison of analytical peak deflection to
Comsol numerical peak deflection

Figure 4: Comparison between analytical and numerical deflection solutions for a circular CMUT
design

6.3 Square CMUT Model

The electromechanics module, boundary conditions, as well as the materialistic composition of
the circular CMUT model was extended in order to create a Comsol model of a square CMUT.
The parameters of this design are displayed in Table 2 and the completed geometric device is
shown in Figure 5. An finer mesh was selected for the square membrane using an iterative
approach and the elaborated procedure is discussed subsequently.

Dimension Value Description
EdgeLength 24.5[μm] Half the length of the square membrane
BotElec 2[μm] Thickness of the bottom electrode
Oxide 0.21[μm] Thickness of the oxide layer
Gap 0.37[μm] Thickness of the vacuum gap

TopElec 1.5[μm] Thickness of the top electrode

Table 2: Parameter name and default values of square CMUT model

Figure 5: 3D square CMUT design with a Finer mesh
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6.3.1 Square CMUT Model Validation

By comparing the centre deflection obtained from Comsol to the expected deflections from
Equations 16, 18, and 22. The results are displayed in Figure 6. It can be seen that all the
models are in excellent agreement with the obtained numerical result. Thus, it can be concluded
that the Comsol model is correct.

(a) Comparison of analytical centre deflection
to the Comsol numerical deflection

(b) Closer look on the centre deflection of ana-
lytical and numerical deflection

Figure 6: Comparison between analytical and numerical center deflection for a square CMUT
design

It appears that the MEMS analytical approximation has the best agreement with the FEA
model with respect to peak deflection, although all models are considered valid as their respective
errors are below 1.5%.

Next, an optimal mesh is obtained for the square membrane using an iterative approach and
the elaborated procedure is discussed subsequently.

6.3.2 Square CMUT Mesh Optimization

The mesh of the square CMUT model was optimized by performing a parametric sweep over
the bounded pressure values for normal, fine, finer, extra fine, and extremely fine mesh config-
urations. The extremely fine mesh structure was assumed to correspond to the true membrane
displacement profile. Hence the errors of all other mesh arrangements relative to this profile were
calculated and the results are presented in Table 3. It was deduced that a mesh profile which
yielded a percent relative error below 1.0 % would produce a deflection profile that adequately
matches analytical results without hoarding computational resources. Thus, the finer mesh
configuration was selected as the default profile for the remainder of the Comsol simulation of
the square CMUT design.

Mesh Configuration Normal Fine Finer Extra Fine Extremely Fine
% Relative Error 2.3617 1.2373 0.4057 0.0501 0

Table 3: Error of mesh profiles relative to the extremely fine configuration

6.4 Model Conversion to Anisotropic Square CMUT

Following the optimization of the isotropic square CMUT model, a duplicate model was con-
structed. The materialistic composition of the dynamic membrane and bottom electrode of the
device were subsequently replaced with [100] mono-crystalline silicon, which is anisotropic by
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Figure 7: Cut lines along which data was extracted

nature. This alteration required the specification of both compliance and stiffness constants.
These values were selected according to Hopcroft [4] and are presented in Equation 6.

This model was then validated by comparing its resultant centre deflection profile to the
analytical solutions.

7 Results

The z displacements, referred to as w2 within the Comsol environment, where obtained from
the FEA model and plotted in a manner such that they could be compared to the macroscopic,
microscopic, and Galerkin analytical deflection profiles. One such Comsol displacement profile
is presented in Figure 8. Geometrically, squares contain four symmetry planes and hence two
unique symmetry lines were selected - one along the side, the other along the diagonal, as shown
in Figure 7.

Figure 8: Comsol deflection profile of a square CMUT
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(a) Side deflection profile (b) Diagonal deflection profile

Figure 9: Square isotropic CMUT model comparison for a constant pressure

Figure 10: Close up of the center deflection for the diagonal cut from Figure 9b

7.1 Isotropic

The side and diagonal deflection profiles of a square, isotropic CMUT membrane subjected
to a constant P = 100 kPa load are presented in Figure 9. The solid lines within these plots
correspond to the analytical deflection profiles. The X line displays the results obtained by FEA
model as described above. The dotted lines represent the deviation of the analytical estimation
from the FEM results and are plotted with respect to the right axis. A membrane displacement
of zero was obtained for the x = a position due to the application of fixed boundary conditions
at this point. The point x = 0 corresponds to the centre of the membrane and hence where
the maximal displacement, w0, occurs. The plots of the deflection profiles are reduced using w0
from the FEM results. Evidently, the deflection profile that yields the closest match to the FEM
result is that obtained from the Galerkin equation, resulting in a deviation below 2%.

The centre deflection, however, does not match, as shown in Figure 10. This is a consequence
of the approximation that was required in order to solve the Garlerkin equation: It is assumed
that the plate is thin and hence the aspect ratio (a/h) must be maximized. As the anisotropic
square CMUT model consisted of an aspect ratio of ≈ 16.33, such a deviation was expected.
Thomsen et al. [8] have shown that for an isotropic plate, a relative difference of 1% is expected
for an aspect ratio of 20. Hence the result lies within the acceptable realm of error.

The utilised FEA model does not converge for higher aspect ratios. In order to overcome this
issue, each plot can be reduced with respect to its centre deflection, w0. The resulting deflection
profiles are presented in Figure 11 in which the points x = a and x = 0 are pinned at 0 and -1,
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respectively.

(a) Side deflection profile (b) Diagonal deflection profile

Figure 11: Square isotropic models at the same deflection

This adjustment reveals that the Garlerkin method is in excellent agreement with the FEM
results. The deviation of the side deflection profile is below 0.25% and below 0.9% in the case
of the diagonal deflection profile.

7.2 Anisotropic

Investigation of the displacement profile of an anisotropic square CMUT membrane yielded
equivalent results. With reference to Figure 12, the mismatch in centre deflections between the
single-term Galerkin approximation and the FEA model is 5.1% and 0.62% using the tertiary-
term expansion. It is expected that a higher-term Galerkin expansion would continue to rapidly
converge towards the deflection profile of the FEA model. Hence excellent agreement is obtained
between these two approximations.

Again, normalization of each deflection profile with respect to itself enabled the comparison
of their shapes with one another. For the single-term Galerkin approximation, the maximal
deviation of the side deflection profile occurs at x = 0, corresponding to the centre of the CMUT
membrane, and was found to be 5.1%. A maximal error of 5.1% was also found for the diagonal
deflection profile. For the third-order Galerkin approximation, the maximal deviation of the

(a) Side deflection profile (b) Diagonal deflection profile

Figure 12: Anisotropic model comparison at constant pressure
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(a) Side deflection profile (b) Diagonal deflection profile

Figure 13: Anisotropic models at the same deflection

side deflection profile occurs at x = 0, corresponding to the centre of the CMUT membrane, and
was found to be 0.62%. A maximal error of 2.6% was found for the diagonal deflection profile.

The root mean squares of both the deviation of the isotropic and anisotropic models are
presented in the Table 4 and 5, respectively.

Table 4: Root mean squares of the deviations of isotropic CMUT model

Constant Pressure Constant Center Deflection
Side Diagonal Side Diagonal

Macro Approach 2.709 2.854 1.941 2.336
Micro Approach 4.860 5.394 5.001 5.503
Galerkin Method 0.867 0.875 0.077 0.332

Table 5: Root mean squares of the deviations of anisotropic CMUT model

Constant Pressure Constant Center Deflection
Side Diagonal Side Diagonal

Galerkin, 1 Term 2.465 2.420 2.199 2.607
Galerkin, 3 Terms 0.249 1.295 0.211 1.045

7.3 Pull-In Voltage

Pull-in voltages of the circular and square membrane of the same width where iteratively de-
termined. It can be seen that the pull-in voltage of the circular membrane is much lower than
the square membrane, potentially due to symmetry. Thus less force is required to collapse the
membrane.
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Figure 14: Pull-in voltage of the square and circular membrane CMUT, using values defined in
Table 1

8 Conclusions

A Comsol FEM analysis of a square CMUT was performed. The lack of a closed-form analytical
solution to such a model required the validation of the utilized boundary conditions by first
simulating a circular model. The circular model was found to be in good agreement with
available analytical solutions. Hence the employed, validated boundary conditions were used
in the construction of both isotropic and anisotropic square CMUTs. The deflection profile of
the isotropic square CMUT was compared to two commonly accepted models as well as the
Galerkin model proposed by Thomsen et al. This comparison revealed that the FEM results
were in excellent agreement with these analytical models. The lowest error, relative to the FEA
simulation, was obtained through the use of the Galerkin method, which resulted in an average
error below 1% without correction. Following the correction of the centre deflection, which arose
due to the selected aspect ratio, a maximum error below 1% is obtained. The Galerkin method
was also employed in the estimation of the deflection profile of the anisotropic case. The other
analytical models used in the investigation of isotropic electrodes cannot be extended to the
study of anisotropic materials. It was found that the Galerkin method is in excellent agreement
with the FEA simulation and converges equally well for both isotropic and anisotropic cases.
An error of less than 2.5% was obtained using the three-term Galerkin expansion.
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