Inexpensive Anti Reflective Passivated Solution

George Baxter
Benjamin Greenlay
Elwin Ha
Matthew Haines
Michael Leung

Dr Ting Tsui

Dr Anders Kristensen
Dr N. Asger Mortensen
Alexander Christiansen

What are Anti-Reflective Coatings?

Current Technologies

Current Technologies

- Low refractive index nanoparticle system
- Alternating refractive indices
- Gradient refractive index (GRIN)

Low Refractive Index Nanoparticle System

Drawbacks

Wavelength specific anti-reflectance

Angle sensitive anti-reflectance

Alternating Refractive Indices

Drawbacks

Expensive – requires CVD
Time consuming – requires
multiple layers

Gradient Refractive Index

Drawbacks

Expensive – requires vacuum deposition

Quality/Quantity tradeoff

Required materials do not all exist

Our Inspiration

Mesoporous Silica (MPS) Nanoparticles

Advantages

Tunable refractive index

Easily fabricated - no specialized deposition

Durable

Made of glass

NS

Anti-Reflective NanoStructures (NS)

Advantages

Removes interface – minimal reflectance

Inexpensive - injection molding

Randomly distributed structures

- defect immune

Disadvantages

Fragile – contact sensitive Increased scattering from structures

Our Solution

MPS passivation film λ /(4 n_{MPS}) film thickness NS - AR coating and MPS bonding site

Advantages

- Inexpensive injection molding/NIL
- Easily fabricated spray coating/dip coating
- Durable MPS scratch resistance
- Improves adhesion increased contact area

Disadvantages

- Multi-step process
- Expensive initial mold
- MPS transmission variance throughout visible spectrum

Applications

Camera lenses Optical glasses Screens (TV, Mobile phone) Telescopes Microscopes

Fabrication

Silicon Master Mold

Reactive Ion Etch

 $O_2 + SF_6$

Variable aspect ratio – gas flow-rate adjustment

Anti-Stiction Coating

FDTS application via molecular vapor deposition

Pattern Transfer Process

(a1) Black silicon mold

(a3) Place polymer onto substrate

(a4) UV expose polymer

(a5) Release negative

MPS Dip Coating Solution

Binder Procedure

1L of Isopropanol

50mL of TEOS

25mL of 0.1M Hydrochloric Acid

MPS Procedure

Dilute 5.6wt% of MPS down to 1.5wt%

Combine MPS and Binder (10, 35 and 60% binder ratio)

Dip Coating Deposition

Chemical Requirements

MPS and Binder solution mixture

Deposition Methods

Spin coating - low velocity Spray coating/dip coating

Validation and Verification

Testing Regime

Substrates

Ormocomp

Norland Optical Adhesive

Polycarbonate

PMMA

Transmission/Durability Tests

Blank substrate

Unprotected NS

MPS thin film

NS + MPS thin film

Consumer Requirements

Primary

```
Reduce reflectivity versus blank substrates <10% Reflection - 0° to 45° Minimal contact durability UV curable
```

Secondary

```
MPS spray deposition
<5% Reflection - 0° to 45°
Moderate contact durability
```

Tertiary

```
Mass production - hot embossing/injection molding Intensive contact durability <1% Reflection - 0° to 45°
```

Characterization

SEM Surface imaging/deposition profile

Optical tests - Transmission testing using UV-Vis

Scratch test - Using Mohs Hardness Test

Hardness test - Berkovich Nanoindentation

Trade-offs

Scratch resistance

Optical quality

Cost of polymer

Cost of curing process

MPS cost

Optical quality

Test Results

to solve this problem I have modeled the temperature ran ach with a constant temperature for a short period of time this solon approaches the true ramped conditions. Who oo steps for the calculation, the difference between this solonificant. An figure describing this approximation is show the actual temperature ramp, while the red lines show a

and much better approximation (15 steps) on the right

Glass Slide

10% Binder 80 mm/min 35% Binder 80 mm/min

60% Binder

80 mm/min

the true ramped conditions. While true ramped coe modeled the te n, the difference between this solu ping the pproximation is shown the difference be ure for a s' t amp, while the red lines show a rog this approximate true ramped co imation (15 steps) on the right. In p, while the red, the difference l entation of the temperature ramp

ation (15 steps) ng this approxin

Glass Slide

10% Binder 120 mm/min 120 mm/min

35% Binder

60% Binder 120 mm/min

er to solve this problem I have modeled the temperature ramp each with a constant temperature for a short period of time. It ps this solution approaches the true ramped conditions. While 1000 steps for the calculation, the difference between this solutionisticant. An figure describing this approximation is shown righted as a latemperature ramp, while the red line show a reft, and much better approximation (15 steps) on the right. It make a very accurate representation of the temperature ramp

Glass Slide

10% Binder 240 mm/min

35% Binder 240 mm/min 60% Binder 240 mm/min

Nanostructures

Nanostructures + MPS

Nanostructures + MPS

Nanostructures + MPS

a constant temperature for a short period of tion approaches the true ramped conditions for the calculation, the difference between An figure describing this approximation is

Glass Slide

35% Binder

120 mm/min

Handling Results

Result Summary

Future Work

Pattern Transfer Process

(b1) Imprint negative onto sample and expose

(b2) Release structures

(c) Double side AR method

Pattern Transfer Process

Nano Imprint Lithography

UV curing Ormocomp, NOA

Hot embossing Polycarbonate, PMMA

Injection Molding

Injection Polycarbonate

MPS Deposition 43

Spray Coating Deposition

Chemical Requirements

MPS and Binder solution mixture

Benefits

Mass Production Faster Deposition

Questions?

References

Christiansen, A.B. et al. "Minimizing Scattering from Antireflective Surfaces Replicated from Low-aspect-ratio Black Silicon". Applied Physics Letters, 2012, 101:131902, DOI:10.1063/1.4754691

Moghal, J. et al. "High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles". ACS Applied Materials & Interfaces, 2012, 4:2:854-859, DOI:10.1021/am201494m